How many types of CMM are Available in the Industry?



There are six basic types of CMM:

  • Bridge
  • Gantry
  • Cantilever
  • Horizontal Arm
  • Portable
  • Optical

1. Bridge CMM



Bridge CMMs feature a probing system that moves along three axes: X, Y and Z; these axes are orthogonal to each other in a Cartesian coordinate system. Each axis has a sensor that monitors the probe’s position (in micrometres) as it moves along an object and detects points on the object’s surface. These points form what is called a point cloud, which “illustrates” the surface area users are interested in inspecting. Bridge CMMs can be divided into two CMM sub-types: moveable-table and moveable-bridge CMMs.


The pros of bridge CMMs
  • One of the most accurate types of CMMs
  • Ideal to measure machined parts with high tolerances
  • Perfect for small- to medium-sized components
  • Enabled for multi-sensor measurements, such as probing and scanning

 

The cons of bridge CMMs
  • Can be expensive
  • Have a fixed measurement volume
  • Lack of portability; you need to bring the part to the system or use machinery to move them around
  • Sensitive to vibrations and must be used in a metrology lab
  • Require rigid setups for each inspected part
  • Complex to operate and needs skilled workers to program the device

2. Gantry CMM


Gantry CMMs are somewhat like bridge CMMs; however, they are usually much larger. Because they are designed to eliminate the need to lift a part onto a table and offer similar accuracy levels as bridge CMMs, Gantry CMMs are regularly used for very heavy or large parts. Gantry CMMs must be mounted on a solid foundation, directly on the floor.

The pros of gantry CMMs
  • Highly accurate
  • Large measurement volume, which facilitates inspections of large/heavy parts
  • Easier to load and unload components than a bridge CMM

 

The cons of gantry CMMs
  • Can be expensive
  • Have a fixed measurement volume
  • Lack of portability; you need to bring the part to the system or carry out significant assembly/disassembly to move the CMM
  • Takes up a lot of floor space
  • Sensitive to vibrations and must be used in a metrology lab
  • Require rigid setups for each inspected part
  • Complex to operate and needs skilled workers to program the device


3. Cantilever CMM



A cantilever CMM differs from a bridge CMMS as the measuring head is only attached to one side of a rigid base. Cantilever CMMs provide open access to inspection technicians on all three sides for ease of operation.

The pros of cantilever CMMs
  • Highly accurate
  • Suitable for smaller parts
  • Access to three sides makes it easier to manually or automatically load and unload components

 

The cons of cantilever CMMs
  • Can be expensive
  • Have a fixed measurement volume
  • Lack of portability; you need to bring the part to the system
  • Sensitive to vibrations and must be used in a metrology lab
  • Require rigid setups for each inspected part
  • Complex to operate and needs skilled workers to program the device

4. Horizontal Arm CMM

Horizontal arm CMMs, as their name implies, have horizontally mounted probes as opposed to vertically mounted probes like other CMMs. They are designed to measure long and thin objects that could not be inspected with vertical CMMs, like sheet metal. Horizontal arm CMMs are also often used to inspect geometries that are difficult to reach. There are two types of horizontal arm CMMs: plate-mounted and runway-mounted.

The pros of horizontal arm CMMs
  • Long measurement volume (long and thin parts)
  • Good for parts requiring low tolerances
  • Does not require a significant foundation system
  • Quick and easy installation
  • Smaller footprint
  • Requires less ceiling height than other types of CMMs
  • Cost-effective

 

The cons of horizontal arm CMMs
  • Less accurate than other CMMs
  • Have a fixed measurement volume
  • Lack of portability; you need to bring the part to the system
  • Sensitive to vibrations and must be used in a metrology lab
  • Require rigid setups for each inspected part
  • Complex to operate and needs skilled workers to program the device

5. Portable Measuring Arm CMM


Portable measuring arm CMMs are coordinate measuring machines that can take measurements of parts right on shop floors, allowing for quick results and real-time analysis. As opposed to inspectors bringing components to a lab to be measured, technicians use an articulated arm, with either a six- or seven-axis system, to measure components wherever required; this is particularly useful to analyze parts while still integrated into their fixtures or assemblies. Portable measurement arms.

The pros of measuring arm CMMs
  • Portable and lightweight: you can bring the CMM to the part
  • Extendable measurement volume (leapfrog)
  • Enabled for multi-sensor measurements, such as probing and scanning
  • Relatively inexpensive
  • Easy to operate (no programming)

 

The cons of measuring arm CMMs
  • Less accurate than other types of CMMs
  • Sensitive to environmental vibrations
  • Requires rigid setups

6. Optical CMM


Optical CMMs are portable non-contact devices. These CMMs use an arm-free system with optical triangulation methods to scan and acquire 3D measurements of objects. Thanks to sophisticated image processing technology, optical CMMs are ultra-fast and guarantee metrology-grade accuracy. Optical CMM scanners are particularly conducive Industry 4.0 manufacturing.

While optical CMMs have a slightly lower level of accuracy, they are nevertheless accurate for a wide range of applications. In fact, optical CMMs are used in conjunction with traditional CMMs in order to free up production bottlenecks. Therefore, parts that require the critical level of accuracy are inspected with a conventional CMM. All other components can be assessed using a more cost-effective optical CMM, which provides satisfactory accuracy—but also portability, flexibility and speed.

The pros of optical CMMs
  • Portable and lightweight: you can bring the CMM to the part
  • Extendable measurement volume (leapfrog)
  • Enabled for multi-sensor measurements, such as probing and scanning
  • Very fast acquisition times
  • Relatively inexpensive
  • Easy to operate (no programming)
  • No rigid setups required

 

The cons of optical CMMs
  • Somewhat less accurate than conventional CMMs, depending upon the application


Above sharing just for your reference. When you’re interested in investing a CMM Machine to improve your quality process, select a supplier who offer a quality service and meet your specific needs.

If you have any enquiry with dimensional equipment, welcome to contact us by email: enquiry@mspmetrology.com




 

10 Mar 2022

GET IN TOUCH
10, Jalan Gemilang 9, Taman Perindustrian Cemerlang, 81800 Ulu Tiram, Johor, Malaysia.
+607-862 6772
STAY CONNECTED
LIKE & FOLLOW US

Ⓒ 2018-2022 MSP Metrology (M) Sdn Bhd (201301013617 / 1043455-P) | Privacy Policy

Visitor :

Powered by NEWPAGES